Образование обогащает культуру, способствует взаимопониманию...
Сегодня как никогда перед человечеством стоит вопрос о необходимости...
Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...
Находим частные производные второго порядка в точке :
и составляем определитель
Исходя из достаточного условия существования локального экстремума, делаем вывод:
, следовательно, точка
является точкой локального экстремума;
Так как , то в точке
функция имеет локальный минимум.
Теперь узнаем значение исходной функции в точке
, которое и будет являться наименьшим значением функции
Ответ:
Особенно стоит заострить внимание на алгоритме нахождения локального экстремума, а так же на том, что определяем экстремум на всей области существования функции.
Надо так же рассказать студентам необходимое и достаточное условие существование функции трех переменных.
1. Необходимое условие
2. В достаточном условии меняется только определитель
,
а условия существования, максимума и минимума остаются без изменений с поправкой на количество переменных.
Следующей задачей преподавателя является ответ на вопросы студентов. После этого переходим к другому примеру.
Он разбивается на несколько этапов и решается двумя студентами. Первый проверяет необходимое условие существования экстремума и находит стационарные точки, второй – достаточное условие, точки максимума и минимума, максимальные и минимальные значения функции. Решение примера осуществляется при активной помощи преподавателя.
Исследовать на экстремум функцию
.
Решение
Проверим выполнение необходимого условия существования экстремума функции. В результате чего получим стационарные точки.
Находим частные производные и составляем систему уравнений
;
Решим отдельно уравнение . Дробь равна нулю, когда ее числитель равен нулю, т.е.
. Пусть
, тогда исходное уравнение примет вид квадратного трехчлена
. Используя теорему, обратную теорему Виета, получаем корни уравнения
.
Таким образом получаем:
подставляя полученные значения в систему получаем четыре стационарные точки:
Используя теорему о достаточном условии существования экстремума функции двух переменных, составляем определитель и находим точки максимума и минимума.
Найдем производные второго порядка:
Это интересно:
Методические рекомендации по проведению практических занятий
Концепция целенаправленного развития у студентов готовности к самообразованию приводит к тому, что самостоятельная деятельность студентов, управляемая и организуемая, тесно смыкается с образованием, которое является составной и закономерной частью целостной системы учебно-воспитательной работы. В р ...
Функциональная пропедевтика
Пропедевтика (от греч. propaideuo — предварительно обучаю), введение в какую-либо науку, предварительный вводный курс, систематически изложенный в сжатой и элементарной форме. В дидактике под пропедевтикой вообще понимают подготовительный курс, представляющий введение в какую-либо науку или учебный ...
Психологические аспекты использования современных информационных технологий
Изучение психологических и социальных аспектов взаимодействия человека и компьютера, а также поиск эффективных методов применения информационных технологий приобретают в настоящее время особую актуальность. Применение компьютеров в повседневной жизни имеет как положительные, так и отрицательные сто ...