Образование обогащает культуру, способствует взаимопониманию...
Сегодня как никогда перед человечеством стоит вопрос о необходимости...
Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...
Доказательство. Если бы была не ограничена в области
, то при любом разбиении области
на части она была бы неограниченна хотя бы в одной из ее частей.
Тогда за счет произвольного выбора точки в этой части
можно сделать значение функции
, а с ним и интегральную сумму
по абсолютной величине сколь угодно большой.
В этом случае интегральная сумма , очевидно, не будет иметь конечного предела и, следовательно, функция
не будет интегрируема.
Замечание. 1. Обратное утверждение неверно, т.е. не всякая ограниченная функция интегрируема.
2. Это лишь необходимое, но не достаточное условие.
3. В дальнейшем будем всегда считать ограниченной в
, т.е.
.
Суммы Дарбу
Как и в одномерном случае при изучении двойных интегралов существенную роль играют так называемые верхняя и нижняя суммы Дарбу
где через ,
обозначены соответственно точная нижняя и верхняя границы функции
в i-й области
.
Легко видеть, что суммы Дарбу являются более простыми суммами по сравнению с интегральными суммами, они однозначно определяются выбранным разбиением области на части; этого нельзя сказать об интегральных суммах. Для непрерывной функции, как легко заметить, суммы Дарбу при заданном способе разбиения области являются просто наименьшей и наибольшей из интегральных сумм
[5].
Для данного способа разбиения области на части независимо от выбора точек
будем иметь двойное неравенство:
, которое сразу вытекает из очевидных неравенств
, если члены обоих этих неравенств умножить на
и просуммировать по i .
Свойства сумм Дарбу
10. При дальнейшем дроблении частей области
с добавлением к старым линиям деления новых нижняя сумма Дарбу не убывает, верхняя не возрастает.
Это интересно:
Функциональная пропедевтика
Пропедевтика (от греч. propaideuo — предварительно обучаю), введение в какую-либо науку, предварительный вводный курс, систематически изложенный в сжатой и элементарной форме. В дидактике под пропедевтикой вообще понимают подготовительный курс, представляющий введение в какую-либо науку или учебный ...
Беседа, как метод активизации мышления учащихся
Беседа – способ обучения, в котором основное место занимают вопросы учителя и ответы учащихся. Учитель ставит вопросы и тем самым побуждает их, опираясь на имеющиеся у них знания, самостоятельно приобретать новые знания. Беседа используется в преподавании с древних времен. Так, древнегреческий фило ...
Организационно – педагогические условия развития
самостоятельности
Основная задача высшего образования заключается в формировании творческой личности специалиста, способного к саморазвитию, самообразованию, инновационной деятельности. Решение этой задачи вряд ли возможно только путем передачи знаний в готовом виде от преподавателя к студенту. Необходимо перевести ...