Образование обогащает культуру, способствует взаимопониманию...
Сегодня как никогда перед человечеством стоит вопрос о необходимости...
Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...
найти точки, наиболее близкие к центру и наиболее удаленные от него.
Решение
1. Пусть точка лежит на поверхности эллипсоида, тогда расстояние от нее до центра вычисляется по формуле
.
2. Очевидно, максимальное значение подкоренного выражения даст наибольшее, а минимальное – наименьшее расстояние .
3. Следовательно, задача сводится к исследованию на экстремум функции трех переменных при уравнении связи
.
4. Составим вспомогательную функцию (функцию Лагранжа):
.
5. Решаем систему уравнений, тем самым, проверяя необходимое условие существования экстремума:
Итак, получаем:
Из последнего уравнения системы следует, что не могут быть одновременно, равняться нулю. Поэтому один из сомножителей
должен равен нулю.
6. Пусть , т.е.
. Тогда
, так как
, следовательно,
. Из четвертого уравнения системы получаем
. Таким образом, получили две стационарные точки:
.
Рассуждая аналогично при получим
, а при
стационарные точки:
.
Полученные точки являются концами трех главных осей эллипсоида. Так как , то можно утверждать, что в точках
функция достигает максимума, а в
- минимума. В стационарных точках
экстремума не существует.
Ответ: - максимума,
- минимума.
Переходим к следующей теме, в которой понадобятся уже имеющиеся знания, но применяемые для другой цели – отыскания наибольших и наименьших значений функции. В частности, изучается только случай замкнутой области. Здесь можно спросить одного из студента об алгоритме нахождения наибольших и наименьших значений функции в замкнутой области, который изложен в лекционном курсе. Затем рассмотреть этот алгоритм на конкретном примере.
Найти наибольшее и наименьшее значения функции в замкнутой области, заданной неравенствами
.
Решение
1. Первым этапом решения примера является изображение этой области:
, т.е. это область ограниченная
прямыми – это треугольник.
Это интересно:
Логика и интуиция при изучении двойного интеграла в педагогическом вузе
Важное условие обеспечения способности мышления к опосредованному отражению действительности – использование дедукции и умозаключений, на основе которых можно получать новые знания. Отличительной особенностью логического мышления является то, что оно от истинных посылок всегда приводит к истинному ...
Экологические проекты в ДОУ
Метод проектов, как уже указывалось выше, связан с развивающимся личностно-ориентированным обучением и может широко использоваться в ДОУ любого типа, в работе с детьми старшего дошкольного возраста. Проект позволяет интегрировать сведения из разных областей знаний для решения одной проблемы и приме ...
Особенности интеллектуального развития дошкольников
Развитие ребенка особенно эффективно, когда оно начинается в раннем возрасте. Детям свойственны огромная познавательная активность, уникальная способность к восприятию нового. Но если эти качества вовремя не развивать и не востребовать, они могут быть впоследствии безвозвратно утеряны. Интеллектуал ...