Образование обогащает культуру, способствует взаимопониманию...
Сегодня как никогда перед человечеством стоит вопрос о необходимости...
Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...
,
где - неопределенный постоянный множитель, и ищут обычный экстремум этой вспомогательной функции. Необходимые условия экстремума сводятся к системе трех уравнений
с тремя неизвестными , из которой можно определить эти неизвестные.
Вопрос о существовании и характере условного экстремума решается на основании изучения знака второго дифференциала функции Лагранжа
.
Функция имеет условный максимум, если
, и условный минимум, если
. В частности, если определитель
для функции
в стационарной точке положителен, то в этой точке имеется условный максимум функции
, если
(или
), и условный минимум, если
(или
).
В случае если уравнение связи достаточно просто, можно в уравнение связи выразить одну переменную через другую и подставить в исходную функцию.
Рассмотрим такой пример. Для его решения вызывается студент к доске и, если необходимо, с помощью преподавателя решает с подробным пояснением. Во время решения остальные студенты записывают объяснения по каждому этапу решения, что облегчит им самостоятельное понимание темы.
Найти условный экстремум функции при условии, что переменные связаны уравнением
.
Решение
1. Так как уравнение связи достаточно сложно, то составим функцию Лагранжа: .
2. Проверим выполнение необходимого условия существования функции Лагранжа, для этого решим систему:
3. Составим дифференциал первого порядка функции Лагранжа, для этого находим вторые частные производные функции Лагранжа:
.
Тогда дифференциал второго порядка функции Лагранжа примет вид:
.
Найдем его значение для :
А) Если , то
и, следовательно, в этой точке функция имеет условный минимум.
Б) Если , то
, следовательно, в этой точке функция имеет условный максимум.
Таким образом,
Ответ:
Этот пример позволил студентам приметь уже имеющиеся знания в новой ситуации. Сформировывается алгоритм решения задач на отыскание экстремумов функции нескольких переменных.
На поверхности трехосного эллипсоида
,
Это интересно:
Основные задачи обучения детей основным движениям
В процессе общеразвивающих упражнений наряду с общими задачами физического воспитания решаются конкретные задачи, которые обусловлены особенностями возрастного развития и спецификой самих упражнений. Поэтому с детьми младшего дошкольного возраста необходимо: Воспитывать у детей интерес и желание за ...
Причины функциональной дислалии
Соматические - физическая и неврологическая ослабленность из-за длительных хронических заболеваний организма (расстройство пищеварения, частые простудные заболевания) Социальные: Педагогическая запущенность (родители не исправляют недостатки в речи детей и не демонстрируют образцов правильного звук ...
Уровни развития пространственного мышления у младших
школьников
В психолого-педагогической литературе довольно много работ освещают вопросы развития пространственной ориентации у детей преддошкольного и дошкольного возраста (В.Е. Ботурова, Н.И. Голубева, М.Н. Волокитена, А.В. Запорожец, А.Н. Знаменская, Е.И. Игнатьев, А.Я. Колодная, А.М. Леушина и др.). В их ра ...