Образование обогащает культуру, способствует взаимопониманию...
Сегодня как никогда перед человечеством стоит вопрос о необходимости...
Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...
Обозначим его АВO.
2. Вторым шагом решения является нахождение локального экстремума функции .
Используя необходимое условие существования локального экстремума функции двух переменных, находим стационарные точки.
Находим и составляем систему:
- стационарная точка, и отмечая ее на графике, оцениваем принадлежность ее области АВO. Она не принадлежит области. Следовательно, она не рассматривается, так как не удовлетворяет условиям:
.
3. Исследуем функцию на границах области.
а) Рассмотрим ОА. На этой прямой переменная принимает значение 0. Подставляя значение в исходную функцию, получаем функцию одной переменной и находим ее производную. Это необходимо для исследования функции на экстремум: . Приравниваем первую производную к нулю, тем самым находим точку, подозрительную на экстремум, и вычисляем значение функции в этой точке:
б) Аналогично исследуем другие границы области.
ОВ. На этой прямой , а, следовательно, исходная функция примет вид . Найдем производную от этой функции и приравняем ее к нулю, тем самым найдем стационарную точку для функции :
.
Далее находим значение функции при :
в) АВ. Уравнение этой прямой имеет вид . Выразим одну из переменных через другую и подставим в исходное уравнение:
Найдем стационарную точку для этой функции, для чего найдем производную функции и приравняем ее к нулю, т.е. найдем нули производной и вычислим значение функции в стационарной точке .
4. Исследуем исходную функцию двух переменных в угловых точках:
1) в точке
2) в точке
3) в точке
5. Выбирая из всех значений функции наибольшее и наименьшее, мы получаем наибольшее и наименьшее значение функции в указанной области.
Итак, получили: .
Ответ: .
Во время решения примеров такого рода могут возникнуть сложности в определении стационарных точек и значений функции на границах области. Поэтому необходимо четко разъяснить все переходы от одной переменной к двум переменным и обратно. Ниже приводятся решения домашних примеров.
Домашняя работа
Найти экстремум функции при условии, что и связаны уравнением .
Это интересно:
Методы и формы организации контроля
Устный опрос требует устного изложения учеником изученного материала, связного повествования о конкретном объекте окружающего мира. Такой опрос может строиться как беседа, рассказ ученика, объяснение, чтение текста, сообщение о наблюдении или опыте. Устный опрос как диалог учителя с одним учащимся ...
Роль сюжетно-дидактических игр в формировании количественных представлений
у детей дошкольного возраста
Счёт и измерение – действия взаимозависимые, они должны выполняться не приблизительно, а точно, правильно и в определённой последовательности. Поэтому в игре, где используются счёт или измерение, воспитатель должен брать на себя такую роль, которая позволила бы ему контролировать правильность выпол ...
Необходимое условие экстремума функции многих переменных
Пусть функция определена в области и будет внутренней точкой этой области. Говорят, что функция в точке имеет максимум (минимум), если её можно окружить такой окрестностью, что бы для всех точек этой окрестности выполнялось неравенство: . Если эту окрестность взять настолько малой, чтобы знак равен ...