Образование обогащает культуру, способствует взаимопониманию...
Сегодня как никогда перед человечеством стоит вопрос о необходимости...
Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...
б) Аналогично исследуем другие границы области.
АС. На этой прямой , а, следовательно, исходная функция примет вид
. Найдем производную от этой функции и приравняем ее к нулю, тем самым найдем стационарную точку для функции
:
.
Далее находим значение функции при
:
в) АВ. Уравнение этой прямой имеет вид . Выразим одну из переменных через другую и подставим в исходное уравнение:
Найдем стационарную точку для этой функции, для чего вычислим производную функции и приравняем ее к нулю, т.е. найдем нули производной
и вычислим значение функции в стационарной точке:
.
4. Исследуем исходную функцию двух переменных в угловых точках:
1) в точке
2) в точке
3) в точке
5. Выбирая из всех значений функции наибольшее и наименьшее, мы получаем наибольшее и наименьшее значение функции в указанной области.
Итак, получили: .
Ответ: .
Найти наименьшее и наибольшее значения функций: в круге
.
Решение
1. Найдем локальный экстремум исходной функции. Вычислим первые частные производные: . Составим систему и найдем стационарные точки:
Получаем стационарную точку
.
Не трудно увидеть, что в точке функция
принимает наименьшее значение.
Рассмотрим функцию Лагранжа: .
Найдем частные производные этой функции:
.
Для определения составим систему уравнений:
Эта система имеет два решения:
1);
2).
Таким образом, получаем, наибольшее значение функция принимает в точке .
Ответ: .
Из всех прямоугольных треугольников с заданной площадью , найти такой, гипотенуза которого имеет наименьшее значение.
Решение
1. Пусть и
- катеты треугольника, а
- гипотенуза.
Это интересно:
Психолого-педагогические особенности учащихся с ЗПР
Изучению психолого-педагогических особенностей детей с задержкой психического развития посвящены труды многих российских педагогов, психологов, дефектологов (Л.С. Выготский, Т.А. Власова, Б.В. Зейгарник, А.Р. Лурия, В.В. Лебединский, К.С. Лебединская, В.И. Лубовский, М.С. Певзнер, Г.Е. Сухарева). В ...
Методические
предпосылки изучения несклоняемых существительных
Существительные в курсе русского языка – одна из важнейших тем. В 1 классе происходит знакомство со словами, обозначающими предметы; во 2 классе – рассматривается общее понятие о существительных, род, изменение по числам; в 3 классе – склонение существительных; правописание падежных окончаний; в 4 ...
Требования к традиционному уроку
В основе рациональной организации урока лежат требования, соблюдение которых позволяет учителю повысить коэффициент полезной деятельности учащихся, а, следовательно, и качество их подготовки. В совокупности эти требования ориентируют учителя на оптимальную структуру урока, и позволяют ему упорядочи ...