Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Взаимосвязь домашнего задания с изучением нового материала

Страница 9

Внимание учащихся привлекается к анализу самих уравнений и выяснению зависимости вида параболы от коэффициента k, а это и является содержанием нового материла. Итогом проделанной работы может служить демонстрация пленок для графпроектора или слайдов, по которым еще раз обсуждаются свойства графика функции у = kхпри k>0.

После закрепления изученных свойств при построении графиков, на дом учащиеся получают задание аналогичное предыдущему, только для функции у = - 2х и сравнить полученный график с графиком у = 2х. На следующем уроке этот материал используется для изучения свойств функции у = kхпри всех k.

При переходе к изучению темы "Функция у = " могут быть на дом заданы аналогичные упражнения с заданием типа: (учащиеся уже умеют строить график функции у = )

1) Построить точки, симметричные данным относительно: а) оси ординат; б) начала координат.

2) Проверить, удовлетворяют ли координаты этих точек уравнению у = .

3) Как, по вашему мнению, должен выглядеть график функции у = (при конкретных значениях k?

5. В методике преподавания математики слабо развиты домашние задания, предваряющие уроки обобщающего повторения. На таких уроках учитель обыкновенно решает с учащимися различные виды задач. При этом теоретический материал выступает в качестве обоснования решений, что, конечно, способствует его повторению, однако часто подбор домашних упражнений не приводит знания учащихся в систему. Возможности же разработки таких домашних заданий, которые приводили бы знания учащихся в более стройную систему, имеются. Так, готовясь к уроку обобщения по теме "Квадратные уравнения", полезно дать в качестве домашнего задания, например, такое: "Решите квадратное уравнение х - 2х - 3 = 0 не менее чем четырьмя способами". При выполнении этого задания учащиеся должны будут использовать все способы, которыми им приходилось решать квадратные уравнения, а именно:

1) используя свойства корней квадратного уравнения;

2) по формуле корней квадратного уравнения;

3) графически;

4) выделяя квадрат двучлена.

Решение квадратного уравнения многими способами приведет знания учащихся в систему, если на следующем уроке проверка правильности выполнения домашнего задания будет соединена с теоретическим обоснованием этих решений и выяснением того, в каких случаях наиболее удобно пользоваться тем или иным способом. Дальнейшая работа в этом плане должна пройти уже на других примерах.

Аналогичная постановка домашнего задания может иметь место при обобщении теоретического материала по теме "Площади многоугольников". Так, к уроку обобщающего повторения по указанной теме можно предложить такое задание: "Вывести формулу площади трапеции не менее чем тремя способами" [см. приложение].

Если на следующем уроке учитель сумеет организовать "защиту" этих решений учащихся, то домашняя работа может оказаться материалом для углубленного повторения и систематизации знаний, учащихся по названной теме.

Страницы: 4 5 6 7 8 9 10 11

Это интересно:

Способы и приемы развития познавательной активности на уроках информатики
Современная школа должна не только сформировать у учащихся определенный набор знаний, но и пробудить их стремление к самообразованию, реализации своих способностей. Необходимым условием развития этих процессов является активизация учебно-познавательной деятельности школьников. В решении данной зада ...

Детское общественное объединение «Юный друг милиции»
В 2003 году майор милиции Евгений Веселов и подполковник милиции Геннадий Стрюков решили возродить угасающую традицию военно-патриотического воспитания - приобщить детей Некрасовского района к своей профессии. Была создана общественная организация, первыми членами которой стали 17 учащихся Некрасов ...

Противоречия опыта гражданского воспитания школьников
Изучение состояния гражданского воспитания школьников позволило выявить ряд противоречий, которые остаются барьерами на пути создания системы воспитания российского гражданина. К этим «тематическим» противоречиям добавляются трудности общего характера: - узкая ранняя профилизация; - прагматизация с ...

КАТЕГОРИИ

Copyright © 2025 - All Rights Reserved - www.dealeducation.ru