Образование обогащает культуру, способствует взаимопониманию...
Сегодня как никогда перед человечеством стоит вопрос о необходимости...
Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...
Правильность решения этой задачи целесообразно проверить воспроизведением его на доске.
Рис.1
Однако планируя повторение и углубление знаний учащихся, полезно предложить всему классу решить на её основе две другие задачи:
1) Какое основание должен иметь параллелограмм, равновеликий данной трапеции и имеющий те же высоту?
Обозначив основание параллелограмма и его площадь соответственно через a и S, учащиеся решают эту задачу так: S = S, а
= 210, а
= 210, а = 210: 15 = 14 (см). Получилось, что основание параллелограмма равно средней линии трапеции.
1) Используя чертеж трапеции (рис.1), постройте параллелограмм, равновеликий ей, с той же высотой.
Рис.2
Если урок целиком посвящается повторению и углублению знаний учащихся, то можно предложить еще две задачи в аналогичной постановке.
3) Вычислите длину основания треугольника, равновеликого данной трапеции и имеющего с ней одинаковую высоту.
4) Дана трапеция. Используя её чертеж, постройте треугольник, равновеликий ей, с той же высотой.
Рис.3
Решение задачи 3) учащиеся могут оформить так же, как и задачи 1). Ответ к задаче 4) дан на рисунке 3.
Из приведенного примера видно, что проверяемое в классе домашнее задание используется для повторения понятия равновеликости плоских фигур, формул площади параллелограмма и треугольника. Кроме того, вычислительная задача подкрепляется возможностью конструирования равновеликих фигур, отвечающих некоторым условиям решенных задач на вычисление.
Таким образом, повторение и углубление знаний органически соединяются с домашним заданием, но проводятся более рационально, чем, если бы предложенные на уроке задачи ставились вне связи с ним. Здесь используются выполненный дома чертеж, данные задачи и результаты её решения. Работа по домашней задаче как бы продолжается в классе, только на более высоком уровне проводимых рассуждений.
Приведу еще пример аналогичной постановки работы. Допустим, в качестве домашнего задания была задана следующая задача6 "Постройте графики функций, заданных формулами:
а) f (x) = x; б) f (x) =
".
На следующем уроке можно изобразить графики этих функций на доске (рис.4), а затем работу с ними продолжить.
Рис.4
Учитель предлагает учащимся выяснить, как можно использовать построенные дома графики, чтобы получить графики функций
f (x) = и f (x) =
.
В результате коллективного обсуждения учащиеся подводятся к мысли, что для построения графиков новых функций лучше изменить форму записи их задания. На основании определения модуля получим следующее:
Это интересно:
Лекционно-семинарская система обучения географии в школе
Лекционно-семинарскую систему обучения географии лучше практиковать в 9-10-х классах, а отдельные ее элементы в 6-8-х классах. Умение слушать необходимо каждому человеку в любых жизненных ситуациях, и этому необходимо учить. Слушание лекции – это сложный творческий процесс, к которому учеников нужн ...
Методические средства и приемы преподавания психологии,
приемлемые для младшего школьного возраста
В практической работе педагога-психолога с учащимися младшего школьного возраста чрезвычайно важно учитывать, что критерии самооценок в этот период еще очень не самостоятельны: школьники остро хотят знать, что о них думают окружающие – и сверстники, и взрослые. Как правило, прослеживается следующая ...
Агрессивность старших дошкольников как психолого-педагогическая проблема
Современные данные психологических, социологических, медицинских исследований показывают, что в России увеличилось число людей, проявляющих в поведении агрессивные тенденции и стремления. В первую очередь это объясняется социально-психологическим фоном жизни, который и определяет выбор соответствую ...