Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Понятие функции. Способы задания функции

Страница 1

Введение в понятия функции – это длительный процесс, завершающийся формированием представлений о всех компонентах этого понятия в их взаимной связи и о роли, играемой им в математике и в её приложениях. Этот процесс ведётся по трём основным направлениям:

- упорядочение имеющихся представлений о функции, развёртывание системы понятий, характерных для функциональной линии (способы задания и общие свойства функций, графическое истолкование области определения, области значений, возрастания и т.д. на основе метода координат);

- глубокое изучение отдельных функций и их классов;

- расширение области приложений алгебры за счёт включения в неё идеи функции и разветвлённой системы действий с функцией.

Первоначально понятие функции как аналитического выражения сложилось в первой половине XVIII века в связи с бурным развитием производительных сил. Термин функция ввёл И. Бернулли в 1718 году. Л. Эйлер предложил в 1748 году определение функции как аналитического выражения.

В общем виде определение функции было дано Н.И. Лобачевским в 1834 году. В современной формулировке: «Если каждому допустимому значению переменной величины х соответствует определённое значение переменной величины у, то х называется независимой переменной, а у – функцией от х».

В этой формулировке слово «соответствует» не говорит о виде зависимости переменных величин. Оно может быть задано описанием; например, чтобы находить последовательные цифры при извлечении квадратного корня из положительного числа, имеется определённый алгоритм.

Идея функциональной зависимости находит свое отражение не только в математике, но и в ряде других наук - физике, химии, биологии, медицине, истории, кибернетике. Велика роль функции как мощного аппарата в познании процессов, происходящих в реальном мире. Знание функциональных зависимостей помогает найти ответы на разнообразные вопросы - от расшифровки памятников древности до управления сложнейшими производственными процессами. Наблюдая веками явления природы, человек замечал соответствие между ними. Систематизируя и обобщая устойчивые взаимосвязи в природе, он познал закономерности и учился применять их для объяснения разнообразных явлений природы. Математическими моделями таких закономерностей и являются функции.

Понятия соответствия и однозначного аналитического выражения функции не противопоставляются, второе просто частный случай первого.

Соответственно можно к понятию функции подвести:

1) рассматривая однозначные аналитические выражения зависимостей;

2) дав примеры соответствия между величинами, не записанными аналитически.

Из алгебры аналитические выражения зависимостей у=ах, у=а/х, у=ах+в и другие; из геометрии – формулы площадей и объёмов, в которых зависимость задана тоже аналитически.

Рассмотрим зависимости, заданные не аналитически. Например, можно взять результат наблюдения температуры воздуха:

6 часов: -2о

7 часов: 0о

8 часов: +1о

9 часов: +1,5о

10 часов: +3о

11 часов: +5о

12 часов: +6,5о

13 часов: +7,5о

14 часов: +8о

15 часов: +8,6о

16 часов: +7о

17 часов: +5о

Рассматривая пары значений времени и температуры и устанавливают, что каждому значению времени наблюдения соответствует определённое значение температуры. В данном случае температура – функция времени.

Понятие функции является одним из понятий, отражающих взаимосвязи явлений и предметов. Это одно из важнейших понятий математики, исходное понятие ведущей её области – математического анализа.

Определение: Функцией называется такая зависимость переменной y от переменной x, при которой каждому значению x соответствует единственное значение y.

Страницы: 1 2 3

Это интересно:

От самопознания к самовоспитанию
Нет ничего более сложного и более важного, чем трезвая, объективная самооценка. "Познай самого себя" - учили великие мыслители древности. Сложно беспристрастно контролировать свое поведение, последствия своих поступков. Еще более сложно объективно оценить свое место в обществе, свои возмо ...

Методика обучения упражнениям в разных возрастных группах
Младший дошкольный возраст. Организация детей для проведения общеразвивающих упражнений имеет существенное воспитательное значение. Дети учатся быстро реагировать на указания, команды воспитателя, ориентироваться в пространстве. Для выполнения упражнений малышам легче встать в круг. Разбор и раздач ...

Технология разноуровневого обучения
Теоретическое обоснование этой технологии основывается на том, что различия основной массы учащихся по уровню обучаемости сводятся, прежде всего, ко времени, необходимому ученику для усвоения учебного материала. Изучались способности учеников в ситуации, когда время на изучение материала не огранич ...

КАТЕГОРИИ

Copyright © 2024 - All Rights Reserved - www.dealeducation.ru