Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Методический смысл действий сложения и вычитания

Страница 5

Например:

Найдите сумму чисел 4 и 6 (Ответ: сумма чисел 4 и 6 - это 10)

Выражение вида 8 - 3 называют разностью.

Число 8 называют уменьшаемым, а число 3 - вычитаемым.

Значение выражения - число 5 могут называть значением разности.

Например:

Найдите разность чисел 6 и 4. (Ответ: разность чисел 6 и 4 - это 2)

Поскольку названия компонентов действий сложения и вычитания вводятся по соглашению (детям сообщаются эти названия и их необходимо запомнить), педагог активно использует задания, требующие распознавания компонентов действий и употребления их названий в речи.

Так же, учащиеся выполняют предметные действия в виде графических и символических моделей. В качестве основной цели здесь выступает не решение простых задач, а сознание предметного смысла числовых выражений и равенств.

Деятельность учащихся сначала сводиться к переводам предметных действий на язык математики, а затем к установлению соответствия между различными моделями.

Например: учитель показывает, как записать равенство, и знакомит детей с этим понятием, а также с термином "значения суммы".

Затем числовые равенства интерпретируются на числовом луче.

Также можно предложить задание, "Пользуясь рисунком, вставьте числа в "окошки"":

При работе с этим рисунком знак "+" служит ориентиром для описания картинки: " Слева 3 звездочки, справа - 1. Всего на рисунке 4 звездочки" Названные числа расставляют в "окошки", и получается равенство: 3+1=4.

Возможно, познакомить детей с числом нуль как с компонентом арифметического действия сложения. Для этой цели предлагается задание: "Ничего не изменилось". Для этого можно записать равенство: 5+0=5, 5-0=5

Из курса математики известно, что для сложения целых неотрицательных чисел выполняются коммуникативные и ассоциативные свойства. В начальном курсе математики учащиеся знакомятся с коммуникативным свойством сложения, называя его "переместительное свойство сложения" или "перестановка слагаемых". При формировании у детей представлений о смысле сложения полезно предлагать им действия связанные с переместительным свойством сложения, например:

а) На левой тарелке 4 апельсина, на правой-3. Покажи, сколько апельсинов на двух тарелках.

Ученики выполняют схематический рисунок и записывают равенства, подсчитав количество апельсинов на двух тарелках.

б) Теперь на левой тарелке 3 апельсина, на правой - 4. Покажи, сколько апельсинов на двух тарелках.

Ученики выполняют схематический рисунок и записывают равенство, подсчитав количество апельсинов на двух тарелках.

Страницы: 1 2 3 4 5 6

Это интересно:

Формы и технология проведения заседаний педсовета
В зависимости от поставленных задач педсовет может быть: инструктивным; проблемным; оперативным . Примерная структура заседания Совета педагогов может выглядеть следующим образом. Вначале педсовета председатель объявляет вопросы, которые будут рассматриваться, в кратком вступительном слове определя ...

Модель идеального воспитательно-образовательного учреждения К.Н. Вентцеля и опыт ее практической реализации
Практическому воплощению идей свободного воспитания в жизнь призваны содействовать воспитательно-образовательные учреждения нового типа, - "Дома Свободного Ребенка". Цель создания такого учреждения, - "прогрессирующее освобождение ребенка от внешнего и внутреннего гнета, предоставлен ...

Методические рекомендации по проведению заключительного инструктажа
Заключительный инструктаж обычно проводят в виде активной беседы. На нем очень важно подобрать верную тональность подведения итогов, где должно проявиться отсутствие личных пристрастий мастера - нет "любимчиков" и "аутсайдеров". Наиболее верным будет сдержанная похвала лучшим уч ...

КАТЕГОРИИ

Copyright © 2025 - All Rights Reserved - www.dealeducation.ru