Образование обогащает культуру, способствует взаимопониманию...
Сегодня как никогда перед человечеством стоит вопрос о необходимости...
Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...
Чтобы самостоятельно решать задачи, ученик должен освоить различные виды моделей, научиться выбирать модель, соответствующую предложенной задаче, и переходить от одной модели к другой.
Необходимо отметить, что в данной работе я не касаюсь краткой записи условия задачи. Этот этап очень важен, однако, я исходила из того, что он традиционно присутствует в работе учителя. Поэтому главное внимание я уделяю тем приемам работы над задачей, которые в меньшей степени используются в традиционной системе, которые помогают мне пробудить у детей интерес к задаче, к поиску решений этой задачи.
При решении простых и составных задач на сложение и вычитание используется схематический чертеж.
Схематический чертеж прост для восприятия, так как:
наглядно отражает каждый элемент отношения, что позволяет ему оставаться и при любых преобразованиях данного отношения;
обеспечивает целостность восприятия задачи;
позволяет увидеть сущность объекта в "чистом" виде без отвлечения на частные конкретные характеристики (числовые значения величин, яркие изображения и др.), что трудно сделать, используя другие графические модели;
обладая свойствами предметной наглядности, конкретизирует абстрактные отношения, что нельзя увидеть, например, выполнив краткую запись задачи;
обеспечивает поиск плана решения, что позволяет постоянно соотносить физическое (или графическое) и математическое действия.
Как было сказано выше, текстовые задачи на сложение-вычитание в 1-м классе строятся как частные случаи отношения величин, поэтому моделирование простой задачи у детей не вызывало затруднения, т.к. величины в задаче находятся в отношении целого и частей.
Рис.3 Схематический чертеж.
Если величины связаны отношением "больше (меньше) на" (Рис. 4.); Сравнение двух величин (Рис. 5.).
Освоение представлений графической, знаково-символической модели в 1-м классе.
Со схемами в системе Д.Б.Эльконина-В.В.Давыдова дети знакомятся с первых уроков, когда находят среди разных предметов одинаковые по какому-либо признаку: длине, площади, форме, объему.
Учащимся выдается набор полосок разных по длине, ширине и цвету. Их задача найти равные по какому-либо признаку. Сразу дети находят одинаковые по цвету, затем, путем наложения, одинаковые по длине. Перед учащимися ставится следующая задача:
Что нужно сделать, чтобы каждый раз не измерять полоски, а найти одинаковые сразу и быстро? Дети предлагают свои варианты: различные значки, но значки должны быть одинаковые, и на одинаковых полосках ставят значки.
А как записать в тетради, что среди полосок есть одинаковые?
Ребята обсуждают задание и приходят к выводу, что нужно зарисовать и поставить значки.
Далее дети выполняют более сложное задание: сравнивают сосуды по объему и находят равные. Равные сосуды необходимо запомнить, а лучше как-то отметить. Опять предлагаются значки.
Затем записывают в тетради с помощью рисунка и значка, что на столе есть одинаковые по объему сосуды.
После этого дети находят сосуды, одинаковые по другим признакам: материалу и высоте. Записывают в тетради, что сосуды равны по высоте с помощью вертикальных отрезков.
На последующих уроках дети с помощью схем учатся находить и определять равные и неравные величины показывать с помощью схем равенство и неравенство величин (Рис. 6).
Рис.6
Через несколько уроков вводится буквенная символика. Все величины обозначаются буквами русского алфавита.
Это интересно:
Основная гимнастика в системе физического воспитания
детей дошкольного возраста
Гимнастика (от греч. "гимнос" - обнаженный) - система специально подобранных физических упражнений и научно разработанных методических положений, направленных на решение задач всестороннего физического развития и оздоровления ребенка. Содержание основной гимнастики составляют основные дви ...
Школьное образование
Обязательное школьное образование было введено в Швеции в 1842 году. Но в ее настоящем виде школа существует с 1962 года. Посещение школы обязательно для всех детей, проживающих в Швеции, в возрасте от 7 до 16 лет. С 1991 года с разрешения муниципальных властей стали открываться и классы для шестил ...
Способы выявления одарённых детей
Выявление одаренных детей - продолжительный процесс, связанный с анализом развития конкретного ребенка. Эффективная идентификация одаренности посредством какой-либо одноразовой процедуры тестирования невозможна. Поэтому вместо одномоментного отбора одаренных детей необходимо направлять усилия на по ...