Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Необходимое условие экстремума функции трех переменных

Педагогика и воспитание » Разработка методики обучения теме экстремумов » Необходимое условие экстремума функции трех переменных

По аналогии исследуем функцию трех переменных.

Пусть функция определена в области и будет внутренней точкой этой области.

Говорят, что функция в точке имеет максимум (минимум), если её можно окружить такой окрестностью

,

чтобы для всех точек этой окрестности выполнялось неравенство.

Если эту окрестность взять настолько малой, что бы знак равенства был исключён, т.е. чтобы в каждой её точке, кроме самой точки выполнялось строгое неравенство , то говорят, что в точке имеет место собственный максимум (минимум), в противном случае максимум (минимум) называют несобственным.

Для обозначения максимума и минимума (как и в случае одной переменной) употребляется общий термин – экстремум.

Предположим, что функция в некоторой точке имеет экстремум.

Покажем, что если в этой точке существуют (конечные) частные производные: , то все эти частные производные равны нулю, так что обращение в нуль частных производных первого порядка является необходимым условием существования экстремума.

С этой целью положим, что , сохраняя переменным; тогда получится функция от одной переменной : .

Так как предположили, что в точке существует экстремум (для определенности – пусть это будет максимум), то, в частности, отсюда следует, что в некоторой окрестноститочки , необходимо выполняться неравенство: , так что упомянутая выше функция одной переменной в точке будет иметь максимум, а отсюда по теореме Ферма следует, что .

Таким образом, можно показать, что в точке и остальные частные производные равны нулю.

Итак, «подозрительными» на экстремум являются те точки, в которых частные производные первого порядка все обращаются в нуль: их координаты можно найти, решив систему уравнений:

Как и в случае функции одной переменной, подобные точки называются стационарными.

Это интересно:

Методика проведения опытно-исследовательской работы
Базой исследования явилась школа №1241 города Москвы Центрального Административного округа. В исследовании принимали участия учащиеся 3 «А» класса. Целью исследования было на практике убедиться в том, что символы эффективно влияют на формирование грамматических навыков у младших школьников. В ходе ...

Зарубежный опыт религиозного образования в светских школах
Проблема религиозного образования подняла множество проблем, такие как: реализация принципа свободы совести, мысли и вероисповедания в многонациональном и многоконфессиональном демократическом государстве, отделение государства от церкви и церкви от государства, атеистические установки, пропагандир ...

Понятие и особенности педагогического конфликта
Педагогическое общение представляет собой коллективную систему социально-психологического взаимодействия. Причем линии общения находятся в постоянном взаимодействии, пересекаются, взаимопроникают и т.п. В педагогической деятельности коллективность общения не просто коммуникативный фон деятельности, ...

КАТЕГОРИИ

Copyright © 2025 - All Rights Reserved - www.dealeducation.ru